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Abstract This work focuses on the optimal control of a quantum system composed
of harmonic oscillators under linear control agents (dipole function, objective operator,
and the penalty operator whose expectation value is to be suppressed). The main pur-
pose of the work is to determine the temporal external field amplitude function. Paper
recalls the formulation of the optimal control equations first. Then a set of ordinary
differential equations over the expectation values of certain unknown entities is con-
structed. These temporal differential equations have time varying coefficients unless
the weight functions appearing in the cost functional are constant. Certain accompa-
nying conditions are needed to get unique solutions. Investigations show that one half
of the conditions should be given at the initial instant and the other half should be spec-
ified at the final moment. Since the differential equations contain another unknown
entity, deviation parameter, solutions must satisfy an algebraic equation derived from
the definition of this parameter. Results do not involve the explicit structure of the
wave function and costate function. Only the external field amplitude and the devia-
tion parameter are determined here. The evaluation of the wave function and costate
function needs additional treatments to the control equations. We report certain ana-
lytical results for external field amplitude and the deviation parameter and give certain
illustrative implementations to finalize the paper.
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1 Introduction

Quantum optimal control of a system is governed by an appropriately chosen cost
functional which must reflect certain behaviors of the system under control [1–5].
First of all we assume that the control over the system is provided by an interaction
with an external energy source which has an electromagnetic origin. In this work we
do not concern with the vector potentials. We assume that the only effect of the exter-
nal system is optical type, hence, can be described by an electromagnetic field with
a purely scalar potential. Multipole expansion which is basically an expansion with
respect to ascending hyperpolarizabilities is used to write the scalar potential. We use
weak field assumption where the interaction potential of the system is described by a
dipole interaction alone. Therefore, the equation of motion of the system is governed
by such potentials plus the system’s Hamiltonian when it is isolated. That is,

H ≡ His − µE(t), t ∈ [ 0, T ] (1)

where His, µ, E(t), and T stand for the isolated system’s Hamiltonian, spatially vary-
ing dipole function, temporaly varying external field amplitude function, and the inter-
action time period, respectively. All of these entities except the external field amplitude
are given.

Second important thing is the main purpose of the control. It aims at making the
deviation between the expectation value of a given operator (objective operator) and
its target’s given value which is either exactly zero (exact achievement) or close to
zero as much as possible (getting smallest deviation from the target). This feature
is reflected into the cost functional by considering the following additive component
which may be called objective term.

Jo ≡ 1

2

(〈
ψ (T )

∣∣Ô
∣∣ψ (T )

〉 − Õ
)2

(2)

where Dirac’s braket notation is used and the symbols Ô and Õ denote the objective
operator and its expectation value’s target respectively.

Third important feature to be reflected into the cost functional is about the sup-
pressing of an undesired expectation value of an operator which may be called penalty
operator. This reflection is done by writing the following additive component (first
penalty term) to the cost functional

J (1)p ≡ 1

2

∫ T

0
Wp (t)

〈
ψ (t)

∣∣Ô ′∣∣ψ (t)
〉2

dt, Wp(t) > 0, t ∈ [ 0, T ] (3)

where Ô ′ and Wp(t) stand for the penalty operator and a given weight function, which
is used to give different importances to different instances of suppression, respectively.

The fourth feature to be reflected into the cost functional is the demand for the
finiteness of the external field amplitude. This is added to the cost functional via the
following additive term (second penalty term)
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J (2)p ≡ 1

2

∫ T

0
WE (t) E (t)2 dt, WE (t) > 0, t ∈ [ 0, T ] (4)

where WE (t) denotes a weight function which is used to suppress the magnitude of
the external field amplitude in different scales at different instances of the control.

Finally we need to reflect the system’s dynamic into the cost functional. This can
be done in two different ways. One way is to eliminate the wave function describing
the system’s dynamic by solving the Schrödinger’s equation of the system in terms of
E(t) and T . This is a quite cumbersome procedure we will avoid here. We will use
the second way which uses a Lagrange multiplier. We employ the following additive
component (dynamical constraint) in the cost functional to take the system’s dynamics
into consideration

Jdc ≡
T∫

0

〈
λ (t)

∣∣∣
∣i h̄

∂

∂t
− H

∣∣∣
∣ψ (t)

〉
dt +

T∫

0

〈
ψ (t)

∣∣∣
∣−i h̄

∂

∂t
− H

∣∣∣
∣ λ (t)

〉
(5)

where 〈ψ(t)| stands for the bra of the wave function and 〈λ(t)| denotes a Lagrange
multiplier bra (costate function).

Now the cost functional of the optimal control of the system under consideration
can be written as the sum of the terms defined above. That is,

J ≡ Jo + J (1)p + J (2)p + Jdc (6)

The first variation of this functional should be made zero to get the control equations
for the system. Since the cost functional contains the bra and kets of the wave and
costate functions together with the external field amplitude function, the coefficients
of their first variations should be individually set equal to zero, the resulting equa-
tions are sufficient to determine all unknowns. By skipping the intermediate steps, the
equations for the bras and kets of the wave and costate functions and also the external
field amplitude are given below

− i h̄
∂

∂t
〈ψ(t)| = 〈ψ(t)| [ His − µE(t) ] , 〈ψ(0)| = 〈 in| (7)

i h̄
∂

∂t
|ψ(t)〉 = [ His − µE(t) ] |ψ(t)〉 , |ψ(0)〉 = |in〉 (8)

−i h̄
∂

∂t
〈λ(t)| = 〈λ(t)| [ His − µE(t) ] − Wp(t)

〈
ψ(t)

∣∣Ô ′∣∣ψ(t)
〉 〈ψ(t)| Ô ′

〈λ(T )| = i
η

h̄
〈ψ(T )| Ô (9)

i h̄
∂

∂t
|λ(t)〉 = [ His − µE(t) ] |λ(t)〉 − Wp(t)

〈
ψ(t)

∣∣Ô ′∣∣ψ(t)
〉
Ô ′ |ψ(t) 〉 ,

|λ(T )〉 = −i
η

h̄
Ô |ψ(T )〉 (10)

E(t) = 2

WE (t)
�e (〈λ(t) |µ|ψ(t)〉) (11)
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where �e, 〈 in| and |in〉 stand for the real part and the given initial forms of the wave
function’s bra and ket respectively, and the deviation parameter η is explicitly defined
below (deviation equation).

η ≡ 〈
ψ(T )

∣
∣Ô

∣
∣ψ(T )

〉 − Õ (12)

As can be noticed immediately the wave function defines the system’s forward evo-
lution starting from the beginning instant of the control (t = 0) whereas the costate
function describes the backward evolution of the system from the final instant of the
control (t = T ). The field equation (11), which determines the external field ampli-
tude connects these two evolutions through transition matrix element between the
state and costate over the dipole function and makes the problem under consideration
a boundary value problem in time.

This work is focused on the application of these equations to a multiharmonic oscil-
lator system and finding the possible solutions to external field amplitude E(t) and
the deviation parameter η. We will use the expectation values of certain operators as
auxiliary tools and we will not attempt to evaluate the wave and costate functions.

We have chosen multiharmonic oscillator system because of its mathematical sim-
plicity. This does not decrease the value of the application here since many vibrational
states are successfully described by elastic forces at least for low lying energy states.
In the sense of actual problems in quantum chemistry elastic forces can be used to
characterize the interactions between the atoms of a molecular system as the zeroth
order of perturbation expansion with respect to anharmonicity.

On the other hand, this multiharmonic oscillators system may present quite strong
nonlinearities depending on the structures of the control operators and the dipole
function. This fact can drop more light on the mathematical structure of the quantum
optimal control theory.

Paper is organized as follows. The second section involves the specifications to get
the equations for a multiharmonic oscillator system. Third section covers the deter-
mination of the external field amplitude and the deviation parameter. Fourth section
includes the solution of the boundary value problem obtained in the third section for
constant weight functions. It also covers the construction of the accompanying con-
ditions. Fifth section contains the concluding remarks to finalize the paper. MuPAD
programs and procedures used in the implementations are given in “Appendix”.

2 Specifications for a multiharmonic oscillator system

If we consider a multiharmonic oscillator system which is composed of N particles
mutually interacting through isotropic elastic forces then we can write

His ≡ −
N∑

i=1

h̄2

2mi

(
∂2

∂x2
3i−2

+ ∂2

∂x2
3i−1

+ ∂2

∂x2
3i

)

+
N−1∑

i=1

N∑

j=i

ki j

2

[ (
x3i−2 − x3 j−2

)2

+ (
x3i−1 − x3 j−1

)2 + (
x3i − x3 j

)2
]

(13)
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where mi stands for the mass of the i th particle while ki j denotes the elastic force con-
stant between the i th and j th particles. This form of the isolated Hamiltonian contains
a potential function which is a quadratic form over 3N coordinates. We can rewrite
the Eq. 13 in the following compact form

His = − h̄2

2me
∇T D∇ + xT Kx (14)

where me denotes an appropriately chosen effective mass parameter and D is a (3N ×
3N ) type diagonal matrix whose (3i − 2)th, (3i − 1)th, and 3th elements are all
me/mi , (1 ≤ i ≤ N ), and the explicit form of K is given below

K ≡
⎡

⎣
N−1∑

i=1

N∑

j=i

ki j

2

(
ei − ej

) (
ei − ej

)T

⎤

⎦ ⊗ I3 (15)

where ei stands for the N element cartesian unit vector whose elements are all zero
except the i th one which is 1 (1 ≤ i ≤ N ) and the symbol ⊗ denotes the direct product
of two matrices such that each element of the left operand is multiplied by the right
operand.

Since the matrix D is positive definite the theory of matrices [6] dictates us that a
coordinate transform can be constructed to diagonalize the matrices D and K at the
same time. To do this we can transform the coordinates as follows

x ≡ Qy (16)

where the (N × N ) matrix Q will be determined to satisfy the folllowing conditions

Q−1D
[

Q−1
]T = I3N (17)

QT KQ = κ (18)

In this formula the matrix I3N denotes the identity matrix of (3N ) × (3N ) type
and κ represents a diagonal matrix whose three diagonal bottommost elements vanish.
The flexible parameter me will be chosen to satisfy the equation

det Q = 1 (19)

This is because of the fact that this transformation scales the volume element of
the 3N -tuple integration appearing in the expectation values, and hence, affects the
normalized nature of the wave function. For the moment we are not going to concern
with the explicit structure of Q because we do not really need it in the rest of the paper.
Its explicit structure is needed only when we need the actual values of the elements
of κ .

As a careful investigation shows that
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Q = D
1
2 R (20)

where R is a (3N )× (3N ) type orthonormal matrix diagonalizing the matrix D
1
2 KD

1
2

and corresponding to a hyperrotation in (3N )-dimensional Euclid space of the position
variables. Its columns are assumed to be organised such that its determinant becomes
1 (−1 is the other possibility).

Equation (20) together with (19) allows us to get the following value for me

me ≡
(

N∏

i=1

mi

) 1
N

(21)

We are now ready to express the system’s isolated Hamiltonian in y coordinates.
We can write

His = − h̄2

2me

3N∑

i=1

∂2

∂yi
2 +

3N∑

i=1

κi y2
i (22)

where κi stands for the i th diagonal element of κ whose explicit definition is given
below

κ ≡ RT D
1
2 KD

1
2 R (23)

As can be noticed without difficulty κ3N−2 = κ3N−1 = κ3N = 0. We do not explicitly
show these vanishing values in (22) for convenience. As a matter of fact κi s appear as
an N -triple because of the direct product structure in the related matrix. This feature
may help us for certain simplifications later.

The specification of the system’s Hamiltonian has been completed now. The next
items to be specified are dipole function, objective and penalty operators, respectively.
We take the dipole function linear in position whereas the objective and penalty oper-
ators will be linear in both position and momentum. That is, they can be expressed in
certain linear forms of the position (and momentum) operators. Since the above trans-
formations are linear the bilinear form structure of these entities will be conserved
under these transformations. Therefore, we can write

µ ≡
3N∑

i=1

µi yi (24)

Ô ≡
3N∑

i=1

[
αi yi + βi

(
−i h̄

∂

∂yi

)]
(25)

Ô ′ ≡
3N∑

i=1

[
α′

i yi + β ′
i

(
−i h̄

∂

∂yi

)]
(26)

where µi , αi , α
′
i , βi , β

′
i , (1 ≤ i ≤ 3N ), represent given scalars.
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These complete the specifications for an isotropic multiharmonic oscillator sys-
tem. We do not specify the weight functions for the moment not to lose the chance of
observing their roles in the evaluational complexities of the solution to the quantum
optimal control problem under consideration.

3 Determination of the external field amplitude and deviation parameter
for a multiharmonic oscillator system

The field equation can be explicitly written as follows after the above specifications

WE (t)E(t) =
3N∑

i=1

µi si (t), 1 ≤ i ≤ 3N (27)

where

si (t) ≡ 2�e (〈λ(t) |yi |ψ(t)〉) , 1 ≤ i ≤ 3N (28)

We can now construct the following equation by simple differentiation and then
using the Eqs. 7 and 8

d

dt
[ 〈λ(t) |yi |ψ(t)〉 ] = 〈λ(t) |{His − µE(t), yi }|ψ(t)〉

− i

h̄
Wp(t)

〈
ψ(t)

∣
∣Ô ′∣∣ψ(t)

〉 〈
ψ(t)

∣
∣Ô ′yi

∣
∣ψ(t)

〉
, 1 ≤ i ≤ 3N

(29)

This equation can be put into the following form after taking real part of its both
sides

ṡi (t) = −2�e 〈λ(t) |{His − µE(t), yi }|ψ(t)〉
+ Wp(t)

〈
ψ(t)

∣∣Ô ′∣∣ψ(t)
〉 〈
ψ(t)

∣∣{Ô ′, yi
}∣∣ψ(t)

〉
,

{
Ô ′, yi

} ≡ − i

h̄

(
Ô ′yi − yi Ô ′) , 1 ≤ i ≤ 3N (30)

where dot represents the temporal differentiation and the Poisson’s brackets whose
definitions are given in the second part of the above equation can be explicitly evaluated
by using (24)–(26). Results are given below

{His − µE(t), yi } = − 1

me

(
−i h̄

∂

∂yi

)
,

{
Ô ′, yi

} = −β ′
iI, 1 ≤ i ≤ 3N

(31)
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which imply

ṡi (t) = 1

me
ri (t)− β ′

i Wp(t)
N∑

i=1

[
α′

i qi (t)+ β ′
i pi (t)

]
, 1 ≤ i ≤ 3N (32)

where in (31) I stands for the unit operator and the new unknowns qi (t), pi (t), and
ri (t) are explicitly defined below

qi (t) ≡ 〈ψ(t) |yi |ψ(t)〉 , 1 ≤ i ≤ 3N (33)

pi (t) ≡
〈
ψ(t)

∣∣∣
∣−i h̄

∂

∂yi

∣∣∣
∣ψ(t)

〉
, 1 ≤ i ≤ 3N (34)

ri (t) ≡ 2�e

(〈
λ(t)

∣∣∣∣−i h̄
∂

∂yi

∣∣∣∣ψ(t)
〉)
, 1 ≤ i ≤ 3N (35)

The first order ordinary differential equation in (32) requires a condition to get
unique solution. Since t varies between 0 and T inclusive either t = 0 or t = T
can be considered as the instant to specify a value for si (t). We can show that most
convenient instant is t = T , that is, si (T ) value should be given. However, as a careful
investigation shows that

si (T ) ≡ −η 〈ψ(T ) ∣∣{Ô, yi
}∣∣ψ(t)

〉 = βiη, 1 ≤ i ≤ 3N (36)

Now we require an ordinary differential equation and accompanying boundary con-
dition for ri (t). To get that condition we can follow the steps mentioned above and
obtain the below equation

ṙi (t) = −�e

(〈
λ(t)

∣∣∣
∣

{
His − µE(t),−i h̄

∂

∂yi

}∣∣∣
∣ψ(t)

〉)

+ Wp(t)
〈
ψ(t)

∣∣Ô ′∣∣ψ(t)
〉
〈
ψ(t)

∣∣∣∣

{
Ô ′,−i h̄

∂

∂yi

}∣∣∣∣ψ(t)
〉
, 1 ≤ i ≤ 3N

(37)

where

{
His − µE(t),−i h̄

∂

∂yi

}
= κi yi − µi E(t)I,

{
Ô ′,−i h̄

∂

∂yi

}
= α′

iI, 1 ≤ i ≤ 3N

(38)

hence

ṙi (t) = −κi si (t)+ µi E(t)I (t)+ α′
i Wp(t)

3N∑

j=1

(
α′

j q j (t)+ β ′
j p j (t)

)
, 1 ≤ i ≤ 3N

(39)
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where

I (t) ≡ 〈λ(t) |I|ψ(t)〉 , 1 ≤ i ≤ 3N (40)

and the accompanying condition should be given as ri (T ) = −αiη. A careful inves-
tigation shows that İ (t) = 0. Since I (T ) = 0 we conclude that I (t) ≡ 0. Therefore,

ṙi (t) = −κi si (t)+ α′
i Wp(t)

3N∑

j=1

(
α′

j q j (t)+ β ′
j p j (t)

)
, 1 ≤ i ≤ 3N (41)

By skipping intermediate steps similar to the abovementioned ones we can show that
the new unknown entities (qi (t), pi (t), 1 ≤ i ≤ 3N ) satisfy the following equations

q̇i (t) = 1

me
pi (t), qi (0) = 〈 in |yi | in 〉 ≡ q(in)i , 1 ≤ i ≤ 3N (42)

ṗi (t) = −κi qi (t)+ µi

WE (t)

3N∑

j=1

µ j s j (t), pi (0) =
〈

in

∣∣∣∣−i h̄
∂

∂y j

∣∣∣∣ in

〉
≡ p(in)i ,

1 ≤ i ≤ 3N (43)

If we define the (3N )-element vectors p, q, r , s, µ, α, α′, β, β ′ such that their i th
elements (1 ≤ i ≤ 3N ) are pi (t), qi (t), ri (t), si (t), µi (t), αi , α

′
i , βi , β

′
i , respectively

then we can put the Eqs. (32), (39), (42), and (43) into the following compact form

ż(t) = A(t)z(t) (44)

where

zT ≡ [
p(t),q(t), r(t), s(t)

]
(45)

A(t) =
[

B WE (t)−1u1uT
2−Wp(t)u3uT

4 B

]
(46)

B =
[

0 −κ
1

me
I3N 0

]
, u1 =

[
µ

0

]
, u2 =

[
0
µ

]
u3 =

[
α′

−β ′
]

u4 =
[

β ′
α′

]

(47)

Equation (44) may have regular or/and irregular singular points in the interval
[ 0, T ] depending on the weight functions WE (t) and Wp(t). If these functions are
assumed to be positive and continous in a region including this interval in the complex
plane of t then we can conjecture that all points of the interval are regular points of
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the differential equation in (44). This means that the solution can be expanded into an
infinite series of nonnegative powers of t . This urges us to write

z(t) = Z(t)c (48)

where c is a constant vector undetermined yet and Z(t), which may be called Evolution
Operator or Propagator, is analytic over the interval [ 0, T ] and satisfies

Ż(t) = A(t)Z(t), Z(0) = I (49)

To determine c we can use the boundary conditions. We can write first

Z(t) ≡
[

Z11(t) Z12(t)
Z21(t) ZT

22(t)

]
, c ≡

[
c1
c2

]
(50)

where c1 and c2 are (6N )-element vectors, and Z11(t),Z12(t),Z21(t),Z22(t) are
(6N )× (6N ) blocks to satisfy

Zi j (0) = δi j I, i, j = 1, 2 (51)

Here, δi j stands for the Kroenecker’s symbol. By taking t = 0 in (48) we can obtain

cT
1 =

[
p(in)1 , . . . , p(in)3N , q(in)1 , . . . , q(in)3N

]
≡ vT

1 (52)

which enables us to write the following equation after taking t = T in (48) and solving
the second one of the resulting partitioned equations

c2 = ηZ22(T )
−1v2 − Z22(T )

−1Z21(T )v1 (53)

where

vT
2 = [ −α1, . . . ,−α3N , β1, . . . , β3N ] (54)

Now we have everything explicitly in terms of known entities except the deviation
parameter η. To evaluate η we rewrite (12) first as follows

η = vT
3 z1(T )− Õ (55)

where z1(t) is the block containing first 6N elements of z(t) and

vT
3 ≡

[
βT ,αT

]
(56)

These equalities urges us to write (55) more explicitly as below
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η = vT
3 Z11(T )v1 − vT

3 Z12(T )Z22(T )
−1Z21(T )v1

+
(

vT
3 Z12(T )Z22(T )

−1v2

)
η − Õ

(57)

which produces

η = vT
3 Z11(T )v1 − vT

3 Z12(T )Z22(T )−1Z21(T )v1 − Õ

1 − vT
3 Z12(T )Z22(T )−1v2

(58)

Now Eq. (27) can be reexpressed as follows

E(t) = WE (t)
−1uT

2 z2(t) = WE (t)
−1uT

2 [ Z11(t)c1 + Z12(t)c2 ] (59)

where everything is known as c2 vector can be explicitly obtained after plugging known
value η into its expression. This completes the analytical determination of the external
field amplitude and deviation parameter. Everything can be explicitly found as long as
Z(t) is evaluated. Its differential equation is accompanied by unit matrix initial value
as we have seen above. However, this is the case only when the weight functions are
positive. Otherwise certain singularities may arise and make it impossible to impose
unit matrix initial condition because of the singularity of Z(t) at t = 0. On the other
hand, Z22(t) may not be invertible when the weight functions are not positive. We
do not deal with these extraordinary circumstances here. We only focus on the cases
where the weight functions are positive during the control.

Another important point to be mentioned is the constraints in the definition of the
multiharmonic system. We assumed that the system is isotropic, that is, not depending
on the direction in the three dimensional physical space. Of course, this can be relaxed,
and then the direct-product with I3 structure is lost. The other important constraint was
the lack of interaction with the origin. We assumed that the whole system’s particles
are mutually interacting through linear forces. Then we selected one of the oscillators
as the new origin of the system’s coordinates. However, we could assume that entire
system is fixed around the origin where another harmonic oscillator is located and not
freely moving in space. If this could happen then one would be able to prove that all
κ values would be positive. And furthermore, we would not be enforced to use the
multiples of 3 as the degree of the freedom for the system. Hence, we may comfortably
use a positive integer N as the dimension and a positive definite κ matrix to describe
the multiharmonic oscillator. In the remaining part of the paper we are going to use
this rather generalized form of the definition for the multiharmonic oscillator.

4 Implementations for constant weight cases

Let us consider the case where the weight functions WE (t) and Wp(t) are given con-
stants and the number of the oscillators is denoted by N . We can rewrite (46) and the
first one of the equations in (47) as follows
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A =
[

B W −1
E u1uT

2−Wpu3uT
4 B

]
, B =

[
0 −κ

1
me

IN 0

]
(60)

where κ may be a nonnegative or positive definite diagonal matrix. If it is nonnega-
tive then its zero eigenvalues correspond to freely moving particles. Otherwise entire
system can be considered as if it is composed of oscillators interacting with the origin
via elastic forces.

Evolution matrix of the system, Z(t), can be analytically evaluated as follows

Z(t) = etA (61)

which enables us to evaluate all intermediate terms and finally external field ampli-
tude and the deviation parameter. We are not going to give explicit structures since
the inverse of Z22(t) can not be analytically found in simple form unless very specific
structure is given for the system under consideration. Even if we have the analytical
forms for the expressions they may not be convenient for actual computations. For
this reason, instead of using explicit expressions, it is better to use symbolic and/or
numeric interpreters for the calculations in computers. We prefer to use MuPAD which
is an Open Computer Algebra System developed at Paderborn University in Germany.
We give more details about MuPAD and its utilization in our implementations in
Appendix. Now we consider Eq. (58) where the deviation parameter η(T ) is given as
a ratio of two T dependent expressions. If the numerator of that expressions vanishes at
certain T values for which denominator remains nonzero then the deviation parameter
becomes zero. That is, the expectation value of objective operator achieves its pre-
scribed target value. This reveals the fact that there may be some specific interaction
time values leading us to exact achievement cases. This situation is plotted in Fig. 1
by using the data given in the first MuPAD code of Appendix. If there is a signal of
the fact that the numerator and the denominator have common factor(s) vanishing at
some nonnegative T values then it is better to eliminate them to get better numerical
stability. As can be noticed from Fig. 1, the numerator of η(T ) vanishes at T values
of 13.86772, 35.74048, 43.76518, 75.88353, 89.42919, respectively. These roots are
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Fig. 1 The variation of deviation parameter’s numerator with respect to control time
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evaluated by MuPAD facilities and Regula–Falsi Method within seven decimal digit
accuracy. The roots in Fig. 1 may seem to be a little bit shifted from these values.
This comes from the utilization of cubic splines to create plot from a finite number of
data. The roots are not evaluated from these splines. Instead, own structure of η(T )’s
numerator is used in the Regula–Falsi method. We are not going to give the MuPAD
code for finding roots although we did not use the MuPAD’s root finding methods but
construct a numerical algorithm based on Regula–Falsi Method. The T values anni-
hilating the numerator of η(T ) are appearing between 0 and 100.0 here. However, the
number of these critical values are in fact infinite because of the sinusoidal and cosi-
nusoidal dependence on T . This behavior comes from the pure imaginary eigenvalues
of B in this case.

If the denominator in (58) vanishes for certain T values which do not make numer-
ator zero at the same time then the worst case is encountered. The deviation of the
objective operator’s expectation value from its target value becomes infinite. These
types of T values should be avoided in control. The variation of η(T )’s denominator
with T is given in Fig. 2. As seen from figure there is just a single root for denominator
in T ’s range between 0 and 100. Although there is oscillation in the denominator of
η(T ) with respect to T there seem not to be any tendency to vanish in other T values.
This is because of the amplitude of the oscillation. It is not sufficiently large to intersect
the horizontal axis. This smallness comes from the initial values. One can find some
other set of initial values for which the denominator of η(T ) vanishes infinitely many
times.

The discussions above imply that η(T ) may have finitely or infinitely many zeros
and poles depending on κ and initial values. Because of the high number of control
parameters in our case we do not give explicit conditions to or not to get poles or zeros
here. A norm and spectral analysis may reveal criteria for this purpose. We keep this
beyond the scope of the paper.

Deviation parameter can be evaluated as a function of control time by using
MuPAD’s symbolic capabilities. However, this is a time and memory consuming pro-
cedure. Although the stack size of MuPAD can be increased from its default, 250 KB,
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Fig. 2 The variation of deviation parameter’s denominator with respect to control time

123



J Math Chem (2009) 46:834–852 847

we do not recommend to use symbolic evaluations unless a real need arises to see
symbolical structures of the entities to be evaluated. Here we have used numerical
facilities. η(T ) is evaluated at certain finite number of T values and then the plots are
created from this finite data by interpolation like using cubic splines. However, this
procedure may hide the poles unless their locations are given as interpolation points
and this latter case may cause a lot of problems because of the sudden change of the
function in the vicinity of the pole. Hence, the variation of η around a pole is depicted
separately. Figures 3 and 4 show the variation of η(T ) in a pole free region and in the
vicinity of the pole, respectively.

The external field amplitude, E(t, T ) can be evaluated by using (59). Its varia-
tion with time, t , is given in Fig. 5 for three different values of T, 0.1, 1.0, and 5.0,
respectively. As can be seen from the figure external field amplitude’s variation in time
becomes flattened as the control time T increases. However, this does not reflect real
situation because of the different scaling of three cases and the use of interpolation.
In the calculations of E(t, T ) we have scaled time t such that new t remains between
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Fig. 3 The variation of deviation parameter with respect to control time in an interval which does not
contain any pole for η(T )
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Fig. 6 The variation of deviation parameter with respect to control time in an interval which contains a
pole for η(T )

0 and 1 inclusive without depending on the value of T . This scaling results in a linear
structure in A when WE and Wp are assumed to be proportional to T and 1

T , respec-
tively. This means that the frequency of the sinusoidal and cosinusoidal oscillations is
proportional to T when T tends to infinity. This, however, implies that the oscillations
of E(t, T ) in t becomes more appearable as T increases. Figure 6 shows this fact.

The entities to evaluate the external field amplitude and the deviation parameter are
defined by using MuPAD’s procedure facility. They are gathered into a single file and
may be called in an xmupad session by using fread command. It must be called
after the initial value assignments mentioned above are done. The matrix A appearing
in the argument of exponential matrix depends on the interaction time, T , and given
through the second code of Appendix.

After the definition of A one can define the 2N × 2N type partitions of Z(t, T ) as
one of the procedure definitions for these four matrices is given in Appendix.

The definitions of the numerator, denominator and itself of η(T ) and finally external
field amplitude can be done through the relevant MuPAD procedures in Appendix.
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The creation of the figures are done by using the plot library of MuPAD. We do
not give the codes written for this purpose anywhere in this paper.

5 Concluding remarks

In this work we have concerned with a quantum multiharmonic oscillator system’s
optimal control under linear dipole interaction and linear objective operator together
with linear penalty operator. We have used expectation values of certain appropriately
defined operators as unknowns instead of the wave and accompanying costate func-
tions. We could have been able to construct ordinary differential equations for these
expectation values. These equations are linear and can be put into matrix form where
the coefficient matrix is time variant unless the weight functions are constants in time.
We have shown that these equations are accompanied by certain boundary conditions
whose first half are given at the beginning of the control while the remaining half
should be given at the final instant of the control. In this sense, the equations describe
a forward and a backward evolution which are related to each other via boundary
conditions.

We could get analytical results in terms of the evolution matrix of the set of ordinary
differential equations and certain constant vectors appearing in the definitions of dipole
function, objective operator, and penalty operator. The results also depend on the dura-
tion of the control, that is, the parameter T .

The actual evaluation of the evolution matrix of the system may not be always pos-
sible depending on the time dependence of the weight functions. Hence the general
results include somehow implicity. We may not write actually explicit results. This im-
plicity continues to survive even if the weight functions are constants in time. Because,
an exponential matrix arises in the structure of the evolution matrix. Although there
are several methods to evaluate it, actual evaluation can not be analytic in general. It
requires numerical methods to get the result unless some specific nature exists in the
argument of the exponential matrix.

Here, we have solved the quantum optimal control problem of a multiharmonic
oscillator system. Time dependent cases of the weight functions can not be solved
analytically in terms of exponential matrices. However, a lot of numerical approxima-
tion methods can be developed to this end.

Acknowledgments Metin Demiralp wishes to acknowledge the financial support from the State Planning
Organization (DPT) of Turkey and thanks to Turkish Academy of Science, where he is a full member, for
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Appendix: MuPAD utilization in implementations

MuPAD has a public licence for all individuals and organisations dealing with edu-
cation and scientific research. It can be used either in standalone terminals of Linux
or under X. The commands corresponding to these mediums are respectively mupad
and xmupad. It can be used in either interactive or batch mode. In batch mode, the
commands to be interpreted are written into a file which called “script”. If we assume
that the name of that file is prog1.mu then the the unix redirectioning command
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mupad < prog1.mu can be used. MuPAD takes the commands from the lines of
the file prog1.mu, executes them sequentially, and sends the outputs to the standard
output stream. Hence, the outputs are displayed on the screen by default. If one wants
to store this output into a file whose name is, say, prog1.out then the unix redirec-
tioning command mupad < prog1.mu > prog1.out can be used. Same kind
of actions can be taken in xmupad without using redirectioning. When xmupad is
invoked, a window for interactive utilization is created and the prompt » is displayed.
As soon as a command is written and entered at this prompt, it is executed and the
output is displayed on this window. The commands can be taken from a batch file
whose name is, say, prog1.xmu, by using fread(“prog1.xmu”) command.
All commands in prog1.xmu should be terminated bay a delimiter either : or ;
and file must not have the session finishing command quit. The following lines are
taken from an input file to assign values to system’s parameters for the quantum opti-
mal control of a nine harmonic oscillator system. Precision is set to environmental
parameter DIGITS by the assignment operator :=. It is set to twenty decimal digit
accuracy. The values of the same type entities except kappas are taken equal and the
common value is denoted by a corresponding word terminating with com. The letters
a, b, ap, and bp stands for α, β, α′, and β ′ parameters. The vectors are named with
the words ending with v. The vector or matrix natures of corresponding entities are
given by the matrix(m,n,List,Type) command whose first two arguments are
for the dimension and the third argument is a single list or list of list to specify the
elements while the last argument specifies the type of entity if it has a special nature
like diagonality. linalg:: prefix means that the following command is taken from
the linear algebra library. The command substitute embeds the vector or matrix
given in its second argument into the matrix given in its first argument at location
specified in its last two arguments.

DIGITS:=20: me:=1: Otilde:=0: WE:=1.0: WP:=1.0:
pcom:=1.0: qcom:=0.0: acom:=1.0: bcom:=0.0: apcom:=0.0:

bpcom:=1.0:
Kappa:=matrix(9,9,[1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,

0.1],Diagonal):
Unit9mat:=matrix(9,9,[1,1,1,1,1,1,1,1,1],Diagonal):
muv:=matrix(9,1,[1,1,1,1,1,1,1,1,1]):
pinv:=pcom*matrix(9,1,[1,1,1,1,1,1,1,1,1]):
qinv:=qcom*matrix(9,1,[1,1,1,1,1,1,1,1,1]):
alphav:=acom*matrix(9,1,[1,1,1,1,1,1,1,1,1]):
betav:=bcom*matrix(9,1,[1,1,1,1,1,1,1,1,1]):
alphaprv:=apcom*matrix(9,1,[1,1,1,1,1,1,1,1,1]):
betaprv:=bpcom*matrix(9,1,[1,1,1,1,1,1,1,1,1]):
v1v:=matrix(18,1): v1v:=linalg::substitute(v1v,pinv,1,1):
v1v:linalg::substitute(v1v,qinv,10,1): v2v:=matrix(18,1):
v2v:=linalg::substitute(v2v,-alphav,1,1):
v2v:=linalg::substitute(v2v,betav,10,1):
v3v:=matrix(18,1): v3v:=linalg::substitute(v3v,betav,

1,1):
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v3v:=linalg::substitute(v3v,alphav,10,1):
u1v:=matrix(18,1): u1v:=linalg::substitute(u1v,muv,1,1):
u2v:=matrix(18,1): u2v:=linalg::substitute(u2v,muv,10,1):
u3v:=matrix(18,1): u3v:=linalg::substitute(u3v,alphaprv,

1,1):
u3v:=linalg::substitute(u3v,-betaprv,10,1):
u4v:=matrix(18,1): u4v:=linalg::substitute(u4v,betaprv,

1,1):
u4v:=linalg::substitute(u4v,alphaprv,10,1):

The following MuPAD code is written as a procedure to create the A matrix for
three harmonic oscillators system mentioned above.

A:=proc(T)
begin

temp:=matrix(36,36):
temp1:=(1/WE)*u1v*linalg::transpose(u2v):
temp2:=WP*u3v*linalg::transpose(u4v):
temp:=linalg::substitute(temp,temp1,1,19):
temp:=linalg::substitute(temp,-temp2,19,1):
temp:=linalg::substitute(temp,-T*Kappa,1,10):
temp:=linalg::substitute(temp,-T*Kappa,19,28):
temp:=linalg::substitute(temp,(T/me)*Unit9mat,

10,1):
temp:=linalg::substitute(temp,(T/me)*Unit9mat,

28,19):
float(temp):

end_proc:

The uppermost and leftmost block element of the evolution matrix is evaluated via
the following simple MuPAD procedure.

Z11:=proc(t,T) begin (numeric::expMatrix(t*A(T)))
[1..18,1..18]: end_proc:

where numeric::means that the numeric library of MuPAD will be used. The func-
tion expMatrix evaluates an exponential matrix. Computations are done at purely
numerical level. Symbolical calculations may take quite long times as we emphasized
before.

The following procedures are also used in the numerical implementations of this
paper.

numer1:=proc(T) begin (linalg::transpose(v3v)*Z11(1,T)*
v1v)[1,1]: end_proc:

numer2:=proc(T) begin (linalg::transpose(v3v)*Z12(1,T)*
numeric::inverse(Z22(1,T))*Z21(1,T)*v1v)[1,1]:
end_proc:

etanum:=proc(T) begin numer1(T)-numer2(T): end_proc:
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etadenom:=proc(T) begin 1-(linalg::transpose(v3v)*
Z12(1,T)*numeric::inverse(Z22(1,T))*v2v)[1,1]:
end_proc:

eta:=proc(T)
begin

(etanum(T)-Otilde)/etadenom(T):
end_proc:

extfield:=proc(t,T)
begin
temp1:=(linalg::transpose(u2v)*Z21(t,T)*

v1v)/(T*WE):
temp2:=(linalg::transpose(u2v)*Z22(t,T)*

numeric::inverse(Z22(1,T))*v2v)/
(T*WE):

temp3:=(linalg::transpose(u2v)*Z22(t,T)*
numeric::inverse(Z22(1,T))*
Z21(1,T)*v1v)/(T*WE):

temp:=temp1[1,1]+eta(T)*temp2[1,1]-temp3
[1,1]:

end_proc:
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